Спутниковая геодезия - определение. Что такое Спутниковая геодезия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Спутниковая геодезия - определение

Спутниковая геодезия
Найдено результатов: 65
Спутниковая геодезия         

раздел геодезии, рассматривающий теории и методы решения практических и научных задач геодезии по результатам наблюдений ИСЗ и др. космических объектов. Наблюдения спутника, а именно фотографирование его на фоне звёзд специальными камерами или измерения дальности и лучевой скорости спутника при помощи радиотехнических и лазерных устройств, позволяют определять координаты пунктов и направления хорд земной поверхности (геометрические задачи), уточнять параметры, характеризующие гравитационное поле Земли (динамические задачи), а также определять взаимное положение островов и материков, исследовать движение земных полюсов, изучать изменения геодезических параметров Земли во времени и т. д. Применение лазера для измерения расстояний возродило интерес к Луне как к объекту наблюдений для решения задач С. г.

При решении геометрических задач С. г. спутник считается точкой, фиксированной в пространстве в некоторый момент времени. Синхронные (одновременные) наблюдения спутника из ряда опорных пунктов и пункта, координаты которого неизвестны, позволяют определить его положение в единой системе координат опорных пунктов. Наблюдение нескольких спутников даёт возможность построить сеть спутниковой триангуляции (См. Спутниковая триангуляция) или проложить векторный ход (см. Космическая геодезия).

Для решения динамических задач С. г. нужно знать законы движения спутника на орбите (см. Небесная механика). Если законы движения спутника считаются хорошо известными, то наблюдения его дают возможность определить координаты пункта наблюдений (орбитальный метод). При уточнении параметров гравитационного поля Земли решение задачи осложняется наличием большого числа уточняемых параметров и необходимостью учёта влияния факторов, возмущающих движение спутника. Наилучшее решение задачи достигается, когда используются наблюдения или данные о движении спутников с орбитами разных наклонов и высот, а также данные наземной гравиметрической съёмки (См. Гравиметрическая съёмка). Для исследования или исключения таких возмущений, как, например, сопротивление атмосферы Земли, используют т. н. Геодезические спутники, орбиты которых выбирают для этой цели особо. В настоящее время в решении динамических задач С. г. всё большую роль играет применение радиотехнических и лазерных методов наблюдений движения спутников и далёких космических объектов.

Лит.: Основы спутниковой геодезии. М., 1974; Построение, уравнивание и оценка точности космических геодезических сетей, М., 1972; Меллер И., Введение в спутниковую геодезию, М., 1967.

А. М. Микиша.

СПУТНИКОВАЯ ГЕОДЕЗИЯ         
раздел геодезии, рассматривающий результаты наблюдений искусственных спутников Земли и др. космических аппаратов для определения координат точек земной поверхности, уточнения параметров гравитационного поля Земли, а также определения взаимного положения удаленных островов и материков, исследования движения земных полюсов и др.
Космическая геодезия         

раздел геодезии (См. Геодезия), в котором изучаются методы определения взаимного положения точек на земной поверхности, размеров и фигуры Земли, параметров её гравитационного поля на основе наблюдений солнечных затмений и покрытий звёзд Луной, фотографирования (на фоне звёзд) Луны, баллонов с источником света, поднимаемых на высоту 20-30 км, и искусственных спутников Земли (ИСЗ), а также измерения расстояний до ИСЗ. Первые работы, относящиеся к К. г., были опубликованы во 2-й половине 18 в.; к середине 20 в. "лунные" методы К. г. получили наибольшее развитие. Однако начиная с 60-х гг. 20 в. работы по К. г. опираются исключительно на позиционные и дальномерные наблюдения ИСЗ (этот раздел К. г. обычно назывался спутниковой геодезией) и наблюдения баллонов. При наблюдениях искусственных и естественных космических объектов и небесных явлений для решения задач К. г. широко применяются методы фотографической астрометрии (См. Астрометрия).

Одним из основных методов решения геометрических задач К. г. является одновременное (синхронное) наблюдение космического объекта (Луны, ИСЗ) из нескольких пунктов на земной поверхности. Если в некоторой системе координат, связанной с Землёй, известны положения двух (или более) из числа этих пунктов, то путём математического решения пространственных треугольников с одной из вершин в точке нахождения космического объекта можно вычислить положения также и др. пунктов, из которых проводились наблюдения. Такой метод установления геодезической связи между пунктами на земной поверхности называется космической (спутниковой) триангуляцией. В случае одновременных позиционных и дальномерных (выполняемых с помощью радиотехнических средств или спутниковыми лазерными дальномерами) наблюдений ИСЗ геодезические связи могут быть осуществлены и при одном пункте с известным положением методом геодезического векторного хода. В описанных методах К. г. космический объект лишь обозначает точку, фиксированную в пространстве в некоторый момент времени. К орбитальным методам К. г. относят способы установления геодезической связи между пунктами, предусматривающие определение положения ИСЗ в пространстве с помощью законов его движения в гравитационном поле Земли; применение этого метода освобождает от необходимости проведения наблюдений во всех пунктах в один и тот же момент времени.

К динамическим задачам К. г. относят определение параметров гравитационного поля Земли путём исследования изменений некоторых элементов орбит ИСЗ, вычисляемых по результатам систематических позиционных и дальномерных наблюдений ИСЗ.

Лит.: Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967; Бурша М., Основы космической геодезии, пер. с чеш., ч. 1, М., 1971; Построение, уравнивание и оценка точности космических геодезических сетей, М., 1972.

Н. П. Ерпылёв.

Космическая геодезия         
Космическая геодезия — наука, изучающая использование результатов наблюдений искусственных и естественных спутников Земли для решения научных и научно-технических задач геодезии. Наблюдения выполняют как с поверхности планеты, так и непосредственно на спутниках. Космическая геодезия получила широкое развитие с момента запуска первого искусственного спутника Земли.
Спутниковая фотосъёмка         
  • Спутниковая фотография сельской местности в округе Хаскелл ([[Канзас]], [[США]]).
  • Изображение Земли ночью, составленное из большого числа отдельных снимков
  • Первая фотография Земли из космоса (суборбитальная ракета A4 ([[Фау-2]]), полёт № 13, 24 октября 1946 года)
  • Первое телевизионное изображение Земли из космоса было получено с погодного спутника TIROS-1 (апрель [[1960 год]]а)
Спутниковая фотосъёмка — фотографирование (фотосъёмка) поверхности Земли или других планет с помощью спутников.
Инженерная геодезия         
МЕТОДЫ ГЕОДЕЗИЧЕСКИХ РАБОТ, ВЫПОЛНЯЕМЫХ ПРИ ИЗЫСКАНИЯХ, В ПРОЕКТИРОВАНИИ, В СТРОИТЕЛЬСТВЕ И ЭКСПЛУАТАЦИИ РАЗЛИЧНЫХ ЗДАНИЙ И СООРУЖЕНИЙ
Задачи инженерной геодезии
Инжене́рная (прикладна́я) геоде́зия изучает методы геодезических работ, выполняемых при изысканиях, в проектировании, в строительстве и эксплуатации различных зданий и сооружений, при разведке полезных ископаемых, а также при использовании и защите природных ресурсов. Одно из основных направлений современной геодезии.
Инженерная геодезия         
МЕТОДЫ ГЕОДЕЗИЧЕСКИХ РАБОТ, ВЫПОЛНЯЕМЫХ ПРИ ИЗЫСКАНИЯХ, В ПРОЕКТИРОВАНИИ, В СТРОИТЕЛЬСТВЕ И ЭКСПЛУАТАЦИИ РАЗЛИЧНЫХ ЗДАНИЙ И СООРУЖЕНИЙ
Задачи инженерной геодезии

раздел геодезии (См. Геодезия), изучающий методы измерений и инструменты, используемые при изысканиях и строительстве инженерных сооружений. Составные части И. г.: топографо-геодезические изыскания, инженерно-геодезическое проектирование, разбивочные работы, выверка конструкций, наблюдения за деформациями сооружений.

При изысканиях строительных площадок местность снимают в масштабах 1:5000-1:500. Геодезическое обоснование строят в виде сетей триангуляции, полигонометрии, нивелирования. Предварительные изыскания трасс линейных сооружений производят по топографическим картам и материалам аэросъёмки. Окончательные изыскания выполняют полевым трассированием. Оптимальные варианты трасс и площадок выбирают с помощью электронно-вычислительных машин по цифровой модели местности. Инженерно-геодезическое проектирование состоит в подготовке топографической основы проекта (планов, профилей) и аналитических данных (координат и отметок точек, длин и азимутов линий), а также в вертикальной планировке площадок, аналитической подготовке проекта и др. Для перенесения проекта на местность создают разбивочную сеть опорных геодезических пунктов в виде триангуляции (туннельной, гидротехнической, мостовой), строительной сетки (на промышленных площадках), сетей полигонометрии (в городах), точной трилатерации (для высотных и уникальных сооружений). От разбивочной сети переносят в натуру главные оси сооружений и детально разбивают все строительные оси и поперечники. На законченных сооружениях выполняют контрольную исполнительную съёмку. Установка в проектное положение конструкций и оборудования включает выверку осей в плане, по высоте и по вертикали. Для плановой выверки применяют струнно-оптические и оптические методы. Конструкции по высоте устанавливают геометрическим и гидростатическим нивелированием или микронивелированием. Вертикальность осей проверяют точными теодолитами (наклонным визированием) или особыми зенит-приборами. При наблюдениях за деформациями сооружений определяют осадки и плановые смещения закрепленных точек (марок). Осадки измеряют высокоточным нивелированием, которое прокладывается периодически (циклами) по строго установленной программе. Применяют также электронно-гидростатические системы с автоматической записью их показаний. Плановые смещения прямолинейных сооружений определяют створным методом, криволинейных - триангуляцией или полигонометрией. Пространственные деформации целесообразно измерять методом наземной стереофотограмметрической съёмки. В этих работах особое внимание обращается на устойчивость (незыблемость) плановой и высотной геодезической основы.

Лит.: Левчук Г. П., Основные виды инженерно-геодезических работ. Геодезические работы при изысканиях и строительстве транспортных и промышленных сооружений, М., 1970; Глотов Г. Ф., Геодезические работы при проектировании и строительстве гидротехнических сооружений, М., [в печати]; Лебедев Н. Н., Геодезические работы при проектировании и строительстве городов и тоннелей, М., 1970; Справочник геодезиста, под ред. В. Д. Большакова и Г. П. Левчука, М., 1966; Видуев Н. Г., Ракитов Д. И., Приложение геодезии в инженерно-строительном деле, 2 изд., М., 1964.

Г. П. Левчук.

Спутниковая антенна         
  • работы на судах]]
  • Антенна на полярном подвесе
  • Основные виды зеркальных антенн
  • «[[Мультифид]]» — несколько облучателей на одной антенне
  • передвижной телевизионной станции]]
АНТЕННА, ИСПОЛЬЗУЕМАЯ ПРИ ОРГАНИЗАЦИИ СВЯЗИ МЕЖДУ ЗЕМНЫМИ СТАНЦИЯМИ С РЕТРАНСЛЯЦИЕЙ ЧЕРЕЗ СПУТНИКИ
Спутниковая антенна, также антенна спутниковой связи, — антенна, используемая для приёма и (или) передачи радиосигналов между земными станциями спутниковой связи и искусственными спутниками Земли, в более узком значении — антенна, используемая при организации связи между земными станциями с ретрансляцией через спутники. В спутниковой связи используются различные типы антенн, самый известный — зеркальные параболические антенны («спутниковые тарелки», ), массово применяемые в различных областях, от спутникового ТВ и сетей VSAT до центров космической
Высшая геодезия         
  • Карта океанических бассейнов по результатам спутниковой альтиметрии. Видны структуры морского дна обнаруженные по гравитационному искажению уровня поверхности моря. (1995, [[NOAA]])
Высшая геодезия (теоретическая геодезия) — одно из основных направлений современной геодезии, которое ввел в употребление германский учёный-геодезист, иностранный член-корреспондент Российской Академии Наук (1907) Фридрих Роберт Гельмерт.
Спутниковая система навигации         
СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТОВ
Спутниковые навигационные системы; Система глобального позиционирования; Спутниковые системы навигации; Спутниковая навигация; GNSS; Gnss; ГНСС; Спутниковые радионавигационные системы; Глобальная система позиционирования; Системы спутниковой навигации
Спу́тниковая систе́ма навига́ции (ГНСС, ) — система, предназначенная для определения местоположения (географических координат) наземных, водных и воздушных объектов, а также низкоорбитальных космических аппаратов. Спутниковые системы навигации также позволяют получить скорость и направление движения приёмника сигнала. Кроме того, могут использоваться для получения точного времени. Такие системы состоят из космического оборудования и наземного сегмента (систем управления).

Википедия

Космическая геодезия

Космическая геодезия — наука, изучающая использование результатов наблюдений искусственных и естественных спутников Земли для решения научных и научно-технических задач геодезии. Наблюдения выполняют как с поверхности планеты, так и непосредственно на спутниках. Космическая геодезия получила широкое развитие с момента запуска первого искусственного спутника Земли.

Что такое Сп<font color="red">у</font>тниковая геод<font color="red">е</font>зия - определение